Predicting Soil Infiltration and Horizon Thickness for a Large-Scale Water Balance Model in an Arid Environment
نویسندگان
چکیده
Prediction of soil characteristics over large areas is desirable for environmental modeling. In arid environments, soil characteristics often show strong ecological connectivity with natural vegetation, specifically biomass and/or canopy cover, suggesting that the soil characteristics may be predicted from vegetation data. The objective of this study was to predict soil infiltration characteristics and horizon (soil layer) thickness using vegetation data for a large-scale water balance model in an arid region. Double-ring infiltrometer tests (at 23 sites), horizon thickness measurements (58 sites) and vegetation surveys (35 sites) were conducted in a 30 km ˆ 50 km area in Western Australia during 1999 to 2003. The relationships between soil parameters and vegetation data were evaluated quantitatively by simple linear regression. The parameters for initial-term infiltration had strong and positive correlations with biomass and canopy coverage (R2 = 0.64 ́ 0.81). The horizon thickness also had strong positive correlations with vegetation properties (R2 = 0.53 ́ 0.67). These results suggest that the soil infiltration parameters and horizon thickness can be spatially predicted by properties of vegetation using their linear regression based equations and vegetation maps. The background and reasons of the strong ecological connectivity between soil and vegetation in this region were also considered.
منابع مشابه
Assessment of the important Factors on Gully Erosion in Arid and Semi-arid Region in Ilam Province
Infiltration is the process of water penetration from the ground surface into the soil and is an important process in the hydrological cycle by which surface runoff and groundwater recharge can be linked. Over the years, the importance of the infiltration process resulted in the development of several simplified analytical models for predicting infiltration. These infiltration models range from...
متن کاملAn estimation of Thornthwaite monthly water-balance in Mighan sub-basin
Water resources in arid and semi-arid regions are heavily influenced by climate change, water shortage, water regulations, and increased water demands. Monthly discharge is one of the most important factors in hydrological studies. Some of the basins are not equipped with adequate hydrometric equipment. In such a case, average monthly discharge could be estimated by regional monthly water balan...
متن کاملEstimation of effective precipitation for winter wheat in different regions of Iran using an Extended Soil-Water Balance Model
Estimated Effective Precipitation (Pe) in dryland areas is an essential element of water resource management. Itrepresents the amount of precipitation available in the crop root zone to meet the needs of evapotranspiration. Thecurrent study compared different approaches for estimating Pe in different climatic zones of Iran. A two-layer soil–water balance (SWB) model was adopted based on the pro...
متن کاملA Practical Desalinization Model for Large Scale Application
Salinity of soil and water is the most important agricultural hazard in arid and semi-aridregions. In saline soils, yield production directly influences by soluble salts in the root zone aswell as by shallow water table depth. The first step for reclamation of such soils is reducingsalinity to optimum level by leaching. The objective of this study was to develop a practicalmodel to estimate wat...
متن کاملComparison of Field Performance of Multiple Soil Moisture Sensors in a Semi-arid Rangeland
Automated electronic soil moisture sensors, such as time domain reflectometry (TDR) and capacitance probes are being used extensively to monitor and measure soil moisture in a variety of scientific and land management applications. These sensors are often used for a wide range of soil moisture applications such as drought forage prediction or validation of large-scale remote sensing instruments...
متن کامل